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Preface

The High Altitude Effects Simulation (HAES) Program sponsored by the

Defense Nuclear Agency since the early 1970 time period, comprises several

groupings of separate, but interrelated technical activities, for example, ICECAP

(Infrared Chemistry Experiments - Coordinated Auroral Program). Each of the

latter have the common objective of providing information ascertained as essential

for the development and validation of predictive computer codes designed for use

with high priority DoD radar, communications, and optical defensive systems.

Since the inception of the HAES Program, significant achievements and results

have been described in reports published by DNA, participating service laborator-

ies, and supportive organizations. In order to provide greater visibility for such

information and enhance its timely applications, significant reports published

since early calendar 1974 shall be identified with an assigned HAES serial number

and the appropriate activity acronym (for example, ICECAP) as part of the report

title. A complete and current bibliography of all HAES reports issued prior to and

subsequent to HAES Report No. I dated 5 February 1974 entitled, "Rocket Launch

of an SWIR Spectrometer into an Aurora (ICECAP 72), " AFCRL Environmental

Research Paper No. 466, is maintained and available on request at DASIAC, DoD

Nuclear Information and Analysis Center, 816 State Street, Santa Barbara,

California 93102, Telephone: (805)965-0551.

This report, which is the fourth scientific report under AFGL contract

F19628-74-C-0130, is the 50th report in the HAES series and covers technical

activities performed during the period November 1975 through December 1976.
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The purpose of the work herein is to provide the results of measurements of
auroral infrared spectra in the range 1. 5-5. 3 #m from a rocket-borne CVF spec-
trometer that penetrated an intense auroral breakup (IBC III+). The Paiute-
Tomahawk sounding rocket (A 10. 205-2) was launched from Poker Flat, Alaska as
part of the ICECAP 73 program.
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Rocketborne Measurement of an
Infrared Enhancement Associated

With a Bright Auroral Breakup

I. OBJECTIVES

The objective of the rocket flight described herein was to measure the atmos-

pheric emissions in the shortwave infrared region during intense auroral activity.

This paper reports measurements of auroral infrared emission spectra in the

range of 1. 5-5. 3 jum associated with an intense auroral breakup (IBC fI + ) pene-

trated by a rocket payload. The rocket system was a Paiute-Tomahawk flown

from the Poker Flat Research Range near Chatanika, Alaska, at 0031:42 Alaska

Standard Time (UT-10 hr) on 24 March 1973.

2. INSTRUMENTATION

The primary instrument of the rocket payload of Paiute-TomahawK USAF

10. 205-2 was a spectrometer for measurements of auroral emission spectra in the

shortwave infrared region (1. 5-5.3 tim). As supporting measurements, the rocket

payload also included a forward-viewing photometer for monitoring the auroral

activity of the region penetrated by the rocket. The basic characteristics of the

optical instruments are summarized in Table 1.

(Received ror publication 24 June 1977)
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Table 1. Characteristics of Optical Instruments Aboard Paiute-Tomahawk
10. 205-2

Infrared Spectrometer:

Wavelength 1. 5-5.3 pm

Spectral resolution -4 percent

Scan rate 2 Hz

Electrical bandwidth 100 Hz

Field -of-view 50 (full angle)

orientation 00 (along forward vehicle axis)

Minimum detectable signal - 1 MR/Mm at 4.3 jsm

Inverse responsivity 14.5 MR/(um V) at 4.3 urm (high
gain)

Photometer:

Wavelength 3914 A

Spectral bandwidth 13 A

Electrical bandwidth 100 Hz

Field-of-view 50 (full angle)

Orientation 00 (coaligned with spectrometer)

Minimum detectable signal 0. 5 kR

Maximum signal 190 kR

The infrared spectrometer1 used a circular-variable filter to scan from 1. 5

to 5. 3 urm at a rate of twice per second (see Figure 1). The spinning filter, an
idium antimonide detector, and associated optics were housed in a dewar cooled to
770K by a reservoir of liquid nitrogen. The calibration curves for the spectrom-

eter are included in Appendix A. 2, 3 The instrument had a 50 full angle field of

view directed along the forward vehicle axis. An interference filter/photomulti-

plier photometer operating at 3914 A was coaligned with the spectrometer to

1. Stair, A.T. Jr., Wheeler, N.B., Baker. D.J., and Wyatt, C.L. (1973)

Cryogenic IR spectrometers for rocketborne measurements, IEEE/NEREM
1973 Record, Part 3: Infrared, The Institute of Electrical and Electronic
Engineers, Boston, Massachusetts.

2. Wyatt, C. L., and Kemp, J. C. (1973) Calibration of SWIR Spectrometer Model
NS-lB-5, prepared for AFGL Contract No. F19628-73-C-0U45, Utah State
University, Logan.

3. Wyatt, C. L. (1974) Revised Calibration of SWIR Spectrometers Model
NS-IB-5 and Model NS-lB-6, prepared for AFGL Contract No. F19628-
73-C-0048, Utah State University, Logan.
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Figure 1. Liquid-Ntrogen Cooled Infrared CVF Spectrometer

monitor the auroral activity and provide a means of calculating the energy deposi-

tion rate from the measured emission profile. Calibration curves for the photom-

eter are also included in Appendix A. These instruments were uncovered at about

70 km by the ejection of a split clamshell nose cone. The payload remained

attached to the rocket motor. The rocket was spin stabilized only, but the aspect

was known precisely from the output of an onboard gyro aspect system.

3. ROCKET FLIGIT SUMMARY

Paiute-Tomahawk 10. 205-2 was launched at 0031:42 Alaskan Standard Time on

24 March 1973, from the Poker Flat Research Range, north of Fairbanks, Alaska.

The rocket new to a peak altitude of 211 km at T + 234 sec. The flight azimuth was

0-.) true. The rocket trajector equations used for data analysis are given in

Table 2. The rocket nose cone was ejected at T + 56 sec at an altitude of 71 km,

exposing the optical instruments at that time.

The rocket roll rate was approximately 6 Hz and the rocket axis had a preces-

sional motion on a cone of about 160 (half angle) with a period of 33 sec. The ele-

vation of the rocket axis is shown as a function of time in Figure 2 for the duration

of the night. As can be seen, the angle to the iertical of the optical axes of the

13



Table 2. Paiute-Tomahawk 10. 205-2 Trajectory Equations

Parameter Equation* Coefficients

Altitude, Z Z = At 2 + Bt +-C A = -0.00456 km/sec 2

B = 2. 1100 km/sec

C = -32. 65 km

Ground Range X = Dt + E D = 0. 1888859 km/sec
East Component, X E = 2. 9953884 km

Ground Range Y = Ft + G F = 0. 1718641 km/sec
North Component, Y G = -0. 6411241 km

These equations are valid for Z > 40 km.

ALTITUDE (kin)

81.5 132.8 181.3 207.0 2114 209.9 190.0 472 1.8
100

0
0-

D• - A10.205-2-

ELEVATION
z 0 ROCKET AXIS
0

-J
W - 5 0

0 50 100 150 200 250 300 350 400
TIME AFTER LAUNCH (Seconds)

Figure 2. Elevation of the Rocket Axis
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instruments goes through a range of from 40 to 360. In studying the data to follow,

this viewing aspect should be kept in mind. Figure 3(a) shows an altitude plot of

this angle from the vertical as a function of altitude for the ascent portion of the

rocket flight from tip off (71 km) to 138 km. The corresponding plot of the azimuth

of the rocket axis is shown in Figure 3(b).

4. AURORAL AND GEOPHYSICAL CONDITIONS

Paiute-Tomahawk 10. 205-2 was launched during an auroral substorm and the

rocket traversed the initial bright region of the auroral expansion phase in the

midnight sector. The extreme brightness of the aurora (>500 kR of X 5577 A), the

negative bay of greater than 1000 y's, the extreme electron density (4 X 10 6 cm-3

and large auroral absorption (14 dB at 30 MHz) in concert indicate that the rocket

penetrated a highly disturbed, highly dosed, active region during the auroral break-
up expansion. Due to partially obscured skies at Poker Flat and Ester Dome and

the rapid time fluctuations of the event, detailed triangulation analysis of ground-
based data were not possible but still give a general picture of the magnitude of the
energy deposition of the region traversed by the rocket. The general geophysical

conditions associated with the launch are summarized in Table 3, and a brief

summary of the ground-based measurements coverage is given below.

Table 3. Geophysical Conditions at Launch

Expansion phase of
auroral substormGeneral condition (intense breakup)

Maximum auroral brightness penetrated 500 kR
(X 5577 A)

Estimated energy deposition rate at 400 ergs/cm 2 sec
time of penetration

4 2
Estimated energy deposited in region 1.5 X 104 ergs/cm

for 5 min before rocket penetration

Maximum Ne penetrated 4 X 106 electrons/cm 3

30 MHz riometer absorption 14 dB

Local magnetic bay -1000 -y

16



4.1 All-sky Camera Results

During the rocket flight, the general optical conditions at the three prime

observing sites were: clear at Ft Yukon, thin overcast at Poker Flat, and thick

overcast at Ester Dome. The all-sky camera pictures from Ft. Yukon and Poker

Flat (Chatanika) are shown in Figure 4, and Figure 5. The times from rocket

liftoff are shown on the figures. The approximate rocket position at 100 km on

rocket ascent and descent is given in Table 4.

Table 4. Look Angles to Rocket Position at 100 km on Ascent and Descent

Ascent Descent

Site El (deg) Az (deg) El (deg) Az (deg)

Ester Dome 59 47 36 47

Poker Flat 78 54 45 49
(Chatanika)

Ft. Yukon 29 211 44 197

As can be seen from Figures 4 and 5, the rocket was launched into a dynamic,

explosive auroral display and penetrated a very bright auroral form on rocket

ascent. The spatial region where the rocket subsequently penetrated on descent

also experienced very bright aurora. However, the conditions had subsided to

moderately bright aurora by the time the rocket descented to 100 km.

4.2 Ground-based Photometers

Meridian scanning photometers were operated during the rocket measurements

program at Ft. Yukon and Ester Dome along the geomagnetic meridian (- 29 ° Az),4

and at Poker Flat along the rocket flight azimuth (490). Fixed photometers

4. Romick, C.J. (1974) Report on the Geophysical Description and Available
Data Associated With Rocket PF-PT-54 (PT-10. 205. Z), prepared for Utah
State University, University of Alaska, Fairbanks.

5. Kofsky, I.L., Meriwether, J.W., Schroeder, J.W., and Sluder, R.B. (1975)
Data Reduction and Auroral Characterizations for ICECAP, HAES Report
No. 4, DNA Report No. 3511F, Contract No. DNA 001-73-C-0027,
Photornetrics, Inc., Lexington, Massachusetts.
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S.1

were pointed at the rocket auroral entry position at Poker Flat (USU) and
6

Chatanika. Overcast conditions from Ester Dome prevented the acquisition of

any quantitative photometric data from that site. The thin clouds over Poker Flat

allowed photometric measurements, but reduced intensities by a factor that was

estimated to be less than 2. Ft. Yukon operated with clear skies during the

mission.

The time history of the auroral intensity of the region penetrated by the rocket

on ascent is best portrayed by the results of the fixed position, X3914 A photometer

shown in Figure 6. This photometer had a 5 (full angle) field of view centered on

a position along the flight azimuth at an angle of 780. From this vantage point, the

rocket position would be within the photometer field of view at rocket flight times

from about T + 60 sec (78 km) to T + 120 sec (155 kin). More importantly, though,

the instrument provides a continuous monitor of auroral activity and particle energy

deposition in the auroral region penetrated by the rocket (85-125 kin) for a period

300II I I

3914A PHOTOMETER(USU Observatory)*
PT 10.205-2

103,42 MRS. UT, MAR 24,1973
2(Pointed at I00-km rocket position)200

W

4

Z
0

W 100n

T-6 T-4 T-2 T-0 T+2 T+4 T+6
TIME AFTER LAUNCH (Minutes)

Figure 6. Ground-based Photometer Data (X3914 A) for Rocket Entry Position.
The rocket time at 100 km on ascent and apogee are indicated.

6. Sears, R. D. (1973) Ionospheric Irregularities: Alaska Photometric Measure-
ment s, DNA Report No. 3235F, Contract No. DNA 01-73-C-01100
Lockheed Palo Alto Research Laboratory, Palo Alto, California.
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of minutes before the launch up until the rocket penetration. The data shown in

Figure 6 run from a period of 6 min before launch up through rocket apogee. The

first of the large double peaks with a magnitude of 210 kR occurred at T + 68 sec,

at which time the rocket was at an altitude of 90 km. Based on the data of

Figure 6, it is estimated that a total of about 1. 5 X 104 ergs/cm2 was deposited

in the region penetrated by the rocket in the 5 min prior to penetration.

The photometer data from Ft. Yukon for 100-km rocket entry and exit points

are given in Table A2 in the Appendix for )k5577, )L4278, and ) 6300 A for the

period of rocket flight and the preceding 280 sec. 4 Figure 7 shows these data at

)5577 and X4278 A for the rocket entry and exit positions. The )5577 A emission

rate exceeded 100 kR from shortly after rocket liftoff until the rocket reached an

altitude of about 165 km (T + 130 sec). In interpreting the results from Ft. Yukon,

two factors are important: (1) in observing the auroral form the viewing aspect is

considerably different from those of the instruments at Poker Flat and those on-

board the rocket, and (2) due to the relatively low elevation angles, appreciable

corrections must be made for optical extinction. The )L5 5 7 7 A intensities at the

rocket entry point should be multiplied by a factor of about 2 to correct for atmos-

pheric extinction.

4.3 Magnetometer and Riometer

The launch of Paiute-Tomahawk 10. 205-2 occurred at the onset of a large

negative bay in the horizontal component of the terrestrial magnetic field. The

College, Alaska, magnetograms are shown in Figure 8 for the period around the

launching. The launch time is indicated. The magnetic bay seen here had a mag-

nitude of approximately 1000 gammas. Magnetometer data from other stations and

a more complete description of the magnetic activity and current systems has been

given by Romick.
4

Also shown in Figure 8 is the 30-MHz auroral absorption as measured at

College Station. The absorption reached levels of about 20 dB, indicating that

high-energy electron fluxes penetrated low into the ionosphere. Throughout the

flight of the rocket, the riometer showed absorption greater than 10 dB.

4.4 Chatanika Radar Results

The incoherent-scatter radar located near the Poker Flat Research Range

(Chatanika) was operated by the Stanford Research Institute in support of the7
ICECAP rocket measurements program. These results are particularly useful

7. Baron, M.B., and Chang, N.J. (1975) ICECAP 73A - Chatanika Radar Results
HAES Report No. 15, DNA Report No. 3531T, Contract No. DNA-001-74-
C-0167, Stanford Research Institute, Menlo Park, California.
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Figure 8. College, Alaska, Riorneter and Magnetometer Data
Around the Flight of Rocket 10. 205-2. The peak absorption
shortly after rocket launch is about 14 dB

in the case of the Paiute-Tomahawk 10. 205-2 since no onboard measurements of

electron density and related particle flux data were obtained. The radar results

yield a good picture of the time history of energy deposition in the region proved

by the rocket.

The radar was operated in a three-position mode to facilitate electric field

and related measurements until shortly before rocket launch (T - 6 min) at which

time the radar was fixed on the predicted rocket entry point (El 78.90, Az 38. 70)

to document the energy deposition in that region prior to and during rocket pene-

tration. Figure 9 shows the electron densities (30-sec integration time) measured

at 91 and 122 km for the period from 1025 to 1100 hr. The electron densities

exceeded 106 cm - 3 at 90 km for a good part of the time that the rocket was on the

upleg trajectory. These high electron densities at 90 km indicate that the influx of

particles of relatively high energy deposited most of their energy below 100 km.

These data are consistent with the increased riometer absorption as seen on

Figure 8.
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The radar electron density data are shown as contours in Figure 10.7 These

contours were made using a data integration time of 5 sec. An intense region of

ionization occurred between 1033:05 (T + 83 sec) and 1033:25 (T + 103 sec) hr UT

from 80 to 100 km. The peak at 1033: 15 hr of 7 X 106 cm - 3 corresponds to an
-2 -1

instantaneous energy deposition of about 1800 ergs cm sec

The electron density data are plotted as height profiles in Figure 11(a) at

reduced integration times (courtesy M. Baron, SRI). Figure 11(a) gives the elec-

tron density profiles at T + 51 sec (63 km rocket altitude) and a composite of data

taken at T + 63 see (rocket altitude 82 kin) and T + 87 sec (116 kin). This composite

was made because the echo from the rocket body contaminates the measurements

at the time the rocket passes the altitude of interest. The profiles before and after

rocket passage are very similar; it is therefore felt that the composite of Figure

11(a) gives a valid representation of the electron density distribution penetrated

by the rocket. Baron and Chang7 detail much more information accumulated dur-

ing this mission, including electric fields, ion and electron temperatures, currents,

auroral clutter maps, conductivities, ion and neutral wind velocities, and energy

deposition.

5. EXPERIMENTAL RESULTS

The rocket penetrated a very bright auroral region on rocket ascent. The

results of the forward-viewing X3914-A photometer shown in Figure 11(b) verify

that this indeed occurred. The maximum possible output of the photometer corre-

sponded to about 200 kR so the instrument was in saturation from about 80 to 97 km.

This strong emission peaked somewhere in the vicinity of 90 km at an emission

rate in excess of 200 kR. The corresponding emission rate on rocket descent was

about 40 kR.

A typical scan of the infrared spectrometer is shown in Figure 12. This scan

was obtained at about 72 km shortly after the spectrometer was uncovered. The

spectrometer calibration (see Appendix A) was used to convert the telemetry volt-

age of this high gain channel to a spectral irradiance in megarayleighs per microm-

eter. Three prominent emission features are evident at 2. 8, 4. 3, and 5. 3 Pm.

The 2.8- and 5. 3 -Mim emissions are attributed to NO whereas the 4.3 is identified

primarily with CO2 . (See the discussion in the following section.)

The 4. 3-pm feature has a width at half-amplitude of about 0. 16 m which is

about the resolution element of the spectrometer at that wavelength and also hap-

pens to be about the expected width of CO 2 band features. The NO features are not

well measured since the NO overtone occurs near the change in filter segments at

about 2. 8 pm and the detector-filter combination, which cuts off at about 5. 3 Mm,

does not include all of the fundamental band.
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Figure 12. Spectral Scan From CVF Spectrometer Taken at 73 km on
Rocket Ascent

The same scan as shown in Figure 12 is repeated in Figure 13 on a logarithmic

scale. This format will be used to present the data which are included in Appen-

dix B.

In viewing the spectral data, the quiescent level of the instrument should be
taken into account. This can be accomplished by considering spectrometer scans

before the instrument cold cover was removed as shown in Figure 14. These

typical scans give a measure, in terms of voltage, of any offset voltages and the

degree of noise fluctuations. In order to obtain a statistically more significant

picture, many background scans were coadded as shown in Figure 15 for the low-

gain channel and Figure 16 for the high-gain channel. In each case, the average

voltage and standard deviation are shown as functions of wavelength.
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Figure 13. 73 km Spectral Scan on Logarithmic Scale

A high gain scan and also the corresponding low gain scan are shown for an
altitude of about 86 km in Figure 17. The approximate noise levels of the instru-
ment as ascertained from the data of Figures 15 and 16 are also shown.

The measured wavelength of the peak near 4. 3 ;m is plotted in Figure 18 for
rocket ascent. The peak of this emission feature appeared to remain relatively

unchanged in wavelength throughout the flight except for a slight downward trend
as the rocket rises from 70 to 80 km.

The peak spectral radiances of the main feature at 4. 3 pm were read from the
spectral scans and are shown in Figure 19 for rocket ascent. Each point shown
represents the reading from each spectral scan of the spectrometer. As the cold
cover was removed, the value at about 72 km was 43 MR/Mm and decreased with

altitude to a minimum at about 77 km whereupon the value increased to a large
peak. This large peak of about 130 MR/pm occurred at about 92 km where the

auroral energy depositions were also maximum. The total measured emission
rate in this band considering the spectral width to be 0. 16 pm would be 21 MR.

Above the peak of the emission layer, the magnitude dropped off to a value of
about 5 MR/pm at 110 km. The emission diminished into the background above

about 130 km.
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A comparison of the 4. 3 -;Am profile measured on rocket ascent and descent is
shown in Figure 20. It is significant that although the auroral activity had signif-
icantly subsided in the region through which the probe descended (20 kR of X3914 A
at 90 km vs over 200 kR on ascent), the peak spectral radiance measured around
90 km had about the same value. Some 330 sec elapsed between the 90 km pene-
tration on ascent and descent during which the rocket had moved P distance of
70 km horizontally to the northeast. The implications of the bright region persist-

ing on rocket descent are that the 4.3-jimn excitation/emission processes do not
closely follow the instantaneous energy input due to the auroral activity, but rather

lag in a manner that depends on the time history of the energy input with a decay
time constant on the order of 5 min. It also appears to be significant that the emis-
sion layer is lower and broader as seen on the rocket descent compared with that

observed during ascent. This could indicate a net downward diffusion of the excited
species.

The values of peak spectral radiance measured at wavelengths near the loca-
tion of the CVF filter junction at 2. 8 pim and the high wavelength cutoff at 5. 3 'Um
are shown in Figure 21. The data from all usable scans are shown; telemetry
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dropout obliterated several scans on the descent data. A comparison of rocket

ascent and descent data indicates a significant enhancement at both wavelengths

associated with the much stronger auroral activity penetrated on rocket ascent.

The similarity of the two ascent curves suggests that both radiations arise from

the same emitting species, presumably NO. The maximum emissions at these

wavelengths was observed between 80 and 90 km but did not show up as a smooth

layer and had considerable structure. The increase with altitude of these optically

thin emissions and the observed structure indicate that the larger emissions

between 80 and 90 km are due to temporal fluctuations rather than a lower inherent

altitude of these emissions compared with the slow 4. 3 Mm emission. It also is

significant that the 2. 8-pm emission was essentially absent during the rocket des-

cent with weak auroral activity.
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6. DISCUSSION OF RES[ILTS

The auroral enhancements measured on rocket 10. 205-2 were tentatively

identified with radiation in the CO 2 (v 3 ) band at 4.3 pm and the NO Av =2 and

Av = 1 bands at 2. 8 and 5. 3 pm, respectively. The rationale behind this identifi-

cation is presented and a discussion of the likely excitation processes is given.

The significant features of the 4.3-pm emission layer were the strong enhance-

ment of infrared radiation associated with this bright aurora, the layer-like shape

of the measured radiation, and the relatively long time constant for the emission

process. Comparison of the peak spectral radiance measured on this flight to a

similar measurement during an aurorally nondisturbed time, 8,9 shows that at an

altitude of 92 km the 4.3-pm emission has been enhanced on the auroral case by

a factor of about 60.

The observed increase of zenith emission below 92 km as the rocket ascended

indicated that the emission region was optically thick; that is, the measured emis-

sion rate is not the integrated total emission along the optical path as is the case

for optically thin emitters which allow only monotonically decreasing integrated

intensity with altitude. The long persistence of the emission (as seen from ascent-

descent comparisons) indicates a process for storing energy with a net radiative

lifetime on the order of minutes. Both of these features are strong evidence for

identifying CO 2 as the principal emitter.

The other possible candidate for 4. 3-pm emission would be NO in the 6%, = I

band. Emission from NO+ would be expected to closely follow, temporally and

spatially, the instantaneous energy deposition as measured by the on-board N+

(x3914 A) photometer (Figure 11) in this intense auroral case. This conclusiGn

was based upon the knowledge that NO+ is an optically-thin radiator in the atmos-

phere in the altitude range of the emission layer, and that the time constant for the

concentration of NO+ is very short compared with the observed temporal behavior

of the 4.3-pm radiation. In the intense region of auroral activity on rocket ascent,

the time constant for the formation or destruction of NO + can be approximated by

(aNe)-, where a is the effective dissociative recombination coefficient and Ne is

the electron density. Since the electron density was over 4 X 106 cm - 3 (see

8. Stair, A.T., Jr., Ulwick, J.C., Baker, K.D., and Baker, D.J. (1975)
Rocketborne observations of atmospheric infrared emissions in the auroral
region, Atmospheres of Earth and the Planets, editor B. M. McCormac,
D. Reidel Publishing Co., p. 335-346.

9. Wheeler, N.B., Stair, A.T., Jr., Frodsham, G., and Baker, D.J. (1976)
Rocketborne spectral measurement of atmospheric infrared emission
during a quiet condition in the auroral zone (1976), USAF Rep. No. AFGL-
TR-76-0252, Environmental Research Papers, No. 582, AFGL, Hanscom
AFB, Massachusetts.
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Figure 10) the time constant is about 1 sec. In addition, the spectral shape of

the NO+ band would be much broader than the observed band which is on the order

of or smaller than the 0. 16 Mm resolution element. These features of the observed

4. 3-j*m feature appear to preclude the possibility of a significant contribution of

the 4.3-Mm emission from NO + .

The excitation mechanism for exciting CO 2 to account for the observed 4. 3-jm

emission involves an indirect process, since the cross section X concentration for

direct excitation of CO 2 by electron bombardment is insignificant compared with the

observed intensities. The proposed process to explain the observations involves

vibrational excitation of N 2 by auroral electrons. The excited N2 molecules form

a reservoir of vibrational energy that can be transferred to CO 2 upon collision,

since the energy spacings of the CO 2 and N 2 vibrational levels happen to coincide.

This resonant v-v energy transfer is, thereby, an efficient process for exciting the

CO 2 which can then radiate at 4.3 Mm. This mechanism is complicated by repeated

absorptions and reemissions in the CO 2 , since the atmosphere is optically thick

to the CO2 radiation in the altitude range of maximum emission. It is also expected

that repeated transfers of vibrational energy back and forth between N2 and CO 2

bytervril rcs * 10
by the reversible process N 2 + CO _ N 2 + CO 2 (001) take place. Kumer has

shown by a more detailed analysis that the general features of the observed profiles

can be explained by such a process and he derives an efficiency of - 15 quanta per

ion pair for the production of N2 vibrational quanta.

The observed profiles at 2. 8 and 5. 3 jim are believed to be due to NO emission

that is enhanced over the normal background due to the bright aurora penetrated on

rocket ascent. Comparison with aurorally nondisturbed measurements 8 , 9 indicates

that the rocket descent data shown in Figure 21 are approximately at aurorally

quiet levels. Under auroral activity, the NO is excited by nitrogen-oxygen proc-

esses 1 1 that energetically can excite both the 6v = 1 and 6v = 2 sequences respon-

sible for the observed emissions at 5. 3 and 2. 8 pm.

A principal precursor for these excitation processes is N( 2D) which is pro-

duced by a number of electron and ion reactions. From the page-full of reactions

listed by Reidy et al,1 1 perhaps the two most important for producing the observed

NO emissions are:

10. Kumer, J. B. (1974) Analysis of 4. 3 pm ICECAP Data, HAES Report No. 19,
AFCRL-TR-74-0334, Contract No. F19628-73-C-0288, Lockheed Palo
Alto Research Laboratories, Palo Alto, California.

11. Reidy, W.P., Degges, T.C., Manley,O.P., Smith, H.J., Carpenter, J.W.,
Stair, A.T., Jr., Ulwick, J.C., and Baker, K.D. (1974) AnalZsis of HAES
Results: ICECAP 72, HAES Report No. 2, Final Report, DNA 3247F,
Contract No. DNA 001-73-0020.
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NO + + e- N(2D) + 0

N(2 D) + 0 2 - NO + 0

These reactions will be fast compared with the 4.3-pm processes described

above. The lower observed altitude of the 5.3-pm emission is believed to be

caused by a temporal variation coupled with this faster response time. Compar-

ison of the 5.3-pm profile of Figure 21 (ascent) with the 3914-A profile of

Figure 11(b), shows a similar temporal increase from 75 to 80 km until the pho-

tometer saturated. The 5.3-pm structure between 80 and 90 km is strongly sug-

gestive of auroral fluctuations, so it is suggested that the peak 5. 3 -pm of about

86 km is representative of an auroral brightening rather than a true layer.

The excitation mechanism (earthshine and 0 atom interchange) for NO excita-
12

tion under nonauroral conditions will not produce radiation at 2. 8 pm, but do

account for the observed background 5.3-pm emission. From the absence of the

2. 8-pm emission during the less intense auroral activity, coupled with the simi-

larity of the altitude profile under intense auroral activity, the conclusion is drawn

that excited NO (Av = 2) is responsible for the auroral enhancement at 2. 8 pm.

An attempt was made to identify and measure emission from N2 0 near 5. 58 pm
13

that has been observed on aircraftborne interferometer measurements. The

relatively small signal compared with the noise level in this region did not warrant

the presentation of an altitude profile, but there was the hint of a slight increase

to a value of about 3-4 MR/pm at the altitude and time of maximum auroral activity

(-85 km). Compared to similar data obtained from a nonauroral background

measurement, 8, 9 this would represent an increase of not more than a factor of 2

due to the intense auroral activity.

12. Degges, T.C. (1971) Vibrationally excited nitric oxide in the upper atmos-
phere, Appl. Optics 10:1856.

13. Huppi, E.R., Rogers, J.W., and Stair, A.T., Jr. (1974) Aircraft observa-
tions of the infrared emission of the atmosphere in the 700-2800 cm - 1

region, Appl. Optics 13:1466.
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Table Al. NS-lB-5 Revised Calibration (High Gain Channels)

V/E(X) E(0)/V L()/V
1  MR -1/V 2

1.5 0.45 + 9 2.22 - 9 31.10 - 8 29.3

1.75 0.70 + 9 1.43 - 9 20.00 - 8 22.0

2.0 1.00 + 9 1.00 - 9 14.00 - 8 17.6

2.25 1.35 + 9 7.41 - 10 10.40 - 8 14.7

2.50 1.60 + 9 6.25 - 10 8.77 - 8 13.8

2.75 1.80 + 9 5.56 - 10 7.80 - 8 13.5

2.75 1.10 + 9 9.10 - 10 12.80 - 8 22.1

3.0 1.00 + 9 1.00 - 9 14.00 - 8 26.4

3.25 1.10 + 9 9.10 -10 12.80 - 8 26.1

3.50 1.45 + 9 8.90 - 10 9.68 - 8 21.3

3.75 1.80 + 9 5.56 - 10 7.80 - 8 18.4

4.00 2. 15 + 9 4.65 -10 6.53 - 8 16.4

4.25 2.55 + 9 3.92 - 10 5.50 - 8 14.7

4.50 2.78 + 9 3.60 - 10 5.05 - 8 14.3

4.75 2.80 + 9 3.57 - 10 5.01 - 8 15.0

5.00 2.50 + 9 4.00 - 10 5.61 - 8 17.6

5.25 2.05 + 9 4.88 - 10 6.84 - 8 22.6

1. L(X)/V = E(X)/Q2V where n = 7. 127 ;A 10 - 3
.

2. MR iA1/V = 2?rXL(X) X 107/V.

The sign and following digit are the power to which 10 is raised in the

exponent.
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Table A2. Time Variations for the 4278, 5577, and 6300 A Emissions at the
100-km Rocket Entry and Exit Points as Seen From Ft. Yukon

Entry - 1510. Exit - 1360

5577 A 4278 A 6300 A

Time Entry Exit Entry Exit En' ry Exit

-280 14.1 7.7 2.4 1.9 1. 1 0.52
-259 25.8 7.7 5.7 1.9 . 6 0.52
-238 69.9 7.7 13.0 2.4 2.7 0.52
-216 31.4 6.3 7.0 1.9 1.6 0.52
-195 31.4 6.3 5.7 1.9 1.6 1.1
-174 25.8 6.3 5.7 1.9 1. 6 0.52
-152 25.8 6.3 7.0 2.4 2.1 1. 1
-131 38.4 6.3 7.0 1.9 2. 1 0.52
-110 25.8 7.7 5.7 1.9 2.1 0.52
-88 17.4 6.3 3.0 1.1 1,6 0.52
-67 20.9 5.0 3,7 0.8 6 0.52
-46 31.4 3.3 5.7 0.8 -. 5 0.52
-24 38.4 4.1 6.7 1. 5 2.1 0.52
-3 20.9 25.8 5.7 7.0 1.6 1.1
+18 69.9 126.9 16.1 29.5 2.7 3.2
+40 154.6 154.6 36.0 44.4 4.3 4.8
+61 126.9 154.6 29.5 36.0 3.6 4.3
+82 103.9 188.9 29.5 66.4 3.6 5.9
+104 230.9 69.9 54.1 19.5 8.0 2.7
+125 188.9 46.9 44.4 13.0 5.9 2.7
+146 57.3 85.3 13.0 19.5 3.2 3.6
+168 103.9 31.4 24.2 10.3 3.6 2.7
+189 103.9 31.4 24.2 10.3 4.3 2.1
+210 126.9 38.4 24.2 6.7 4.3 2.1
+232 103.9 31.4 19.5 6.7 4.3 2. 1
+253 85.3 31.4 19.5 6.7 4.8 2.1
+274 38.4 25.8 13.0 7.0 3.2 2.1
+296 31.4 20.9 10.3 7.0 3.2 2. 1
+317 31.4 20.9 10.3 7.0 3.2 1. 6
+338 31.4 17.4 6.7 5.7 2.7 1.6
+360 25.8 17.4 10.3 5.7 3.2 1. 6
+381 25.8 17.4 10.3 5.7 2.7 1.6
+402 20.9 14.1 7.0 5.7 2. 1 1. 1
+424 20.9 14.1 7.0 4.4 2.1 1. 1
+445 20.9 14.1 7.0 4.4 2. 1 1. 1
+466 20.9 14.1 7.0 4.4 2.1 1. 1
+488 20.9 14.1 7.0 4.4 1. 6 1. 1
+509 20.9 17.4 7.0 5.7 2.1 1.6
+530 20.9 85.3 6.7 24.2 2.1 2.7
+552 17.4 25.8 5.7 5.7 1.6 1.6
+573 17.4 25.8 5.7 5.7 1.6 1.6
+594 17.4 20.9 5.7 5.7 1. 6 2.1
+616 17.4 25.8 5.7 5.7 11.6 2.1
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Appendix B

Circular Variable Filter Spectrometer Spectral Scans
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Figure B3. Al10. 205-2, Ascent, High Gain - 73. 34 km
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Figure B8. Al10. 205-2, Ascent, High Gain - 77. 23 km
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Figure B14. Al10. 205-2, Ascent, High Gain - 81. 82 km
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Figure B17. A10. 205-2, Ascent, High Gain - 84. 84 km
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Figure B18. Al10. 205-2, Ascent, High Gain - 84. 84 km
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Figure B19. A10. 205-2, Ascent, High Gain -85. 58 km
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Figure B32. A10. 205-2, Ascent, Low Gain -94.39 km
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Figure B39. Al10. 205-2, Ascent, High Gain - 98. 68 km

Cr

I O

L)
La-

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
E WAVELENGTH ("mn FOR SCAN 91

Figure B40. A10.205-2, Ascent, High Gain-99.39 km

71



c',1

C)

Cr

w V
-J

([I
() (1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

WAVELENGTH (/Im) FOR SCAN 92

Figure B41. A10. 205-2, Ascent, High Gain - 100. 09 km

I

Uj
w

'C tn LLLJJ.L
1. . . 30 35 40 . . .

WAEENT Igm FoSAN9

FiueB2 l.20-,AcnHghGi 0.9k

L72



E

L

C.)

C-

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
WAVELENGTH (' m FOR SCAN 94

Figure B43. A10. 205-2, Ascent, High Gain - 101. 49 kmn
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Figure B44. Al10. 205-2, Ascent, High Gain - 102.19 km
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Figure B48. A10.205-2, Ascent, High Gain- 104.96 km
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Figure B49. Al10. 205-2, Ascent, High Gain - 105. 64 km
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Figure B53. A10. 205-2, Ascent, High Gain - 108.37 km
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Figure B54. A1O. 205-2, Ascent, High Gain - 109.04 km
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Figure B55. A 10.205-2, Ascent, High Gain - 109. 71 kmn
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Figure B56. A10. 205-2, Ascent, High Gain - 110. 38 km
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Figure B57. A10. 205-2, Ascent, High Gain - 111. 05 km
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Figure B58. A 10.205-2, Ascent, High Gain - 111. 72 km
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Figure B59. A10. 205-2, Ascent, High Gain - 112.38 km
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Figure B60. A 10. 205-2, Ascent, High Gain - 113. 05 km
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Figure B61. A 10. 205-2, Ascent, High Gain - 113. 71 km
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Figure B62. A10. 205-2, Ascent, High Gain - 114.38 km
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Figure B64. A10.205-2, Ascent, High Gain -115.67 kmn
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Figure B65. A10. 205-2, Ascent, High Gain - 116.32 km
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Figure B68. A10. 205-2, Ascent, High Gain - 118.26 km
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Figure B69. A10. 205-2, Ascent, High Gain - 118.890 km
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Figure B71. A10. 205-2, Ascent, High Gain - 120. 18 km
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Figure B72. A10.205-2, Ascent, High Gain- 120.82 km

87



E

Lii
C-

cc

I o

C-

Lii
q-

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
WAVELENGTH (pLm) FOR SCAN 124

Figure B73. Ala. 205-2, Ascent, High Gain - 121.45 km
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Figure B74. A 10. 205-2. Ascent, High Gain - 122. 08 km
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Figure B75. A10. 205-2, Ascent, High Gain - 123.34 km
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Figure B77. Al10. 205-2, Ascent, High Gain - 123. 96 km
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Figure B78. AlO0. 205-2, Ascent, High Gain - 124. 58 km
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Figure B79. Al10. 205-2, Ascent, High Gain - 125. 20 km
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Figure B80. A10.205-2, Ascent, High Gain- 125.82 km
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Figure B81. A10. 205-2, Ascent, High Gain - 126.44 km
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Figure B82. A10. 205-2, Ascent, High Gain - 127.05 km
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Figure B83. A10. 205-2, Ascent, High Gain - 127. 66 km
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Figure B84. A10. 205-2, Ascent, High Gain - 128.27 km
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Figure B85. A 10. 205-2, Ascent, High Gain - 129.48 km
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